十年網(wǎng)站開發(fā)經(jīng)驗(yàn) + 多家企業(yè)客戶 + 靠譜的建站團(tuán)隊(duì)
量身定制 + 運(yùn)營維護(hù)+專業(yè)推廣+無憂售后,網(wǎng)站問題一站解決
這篇文章主要講解了“java中Flink集群搭建與運(yùn)行機(jī)制”,文中的講解內(nèi)容簡單清晰,易于學(xué)習(xí)與理解,下面請(qǐng)大家跟著小編的思路慢慢深入,一起來研究和學(xué)習(xí)“java中Flink集群搭建與運(yùn)行機(jī)制”吧!
創(chuàng)新互聯(lián)公司主要從事成都做網(wǎng)站、網(wǎng)站建設(shè)、外貿(mào)營銷網(wǎng)站建設(shè)、網(wǎng)頁設(shè)計(jì)、企業(yè)做網(wǎng)站、公司建網(wǎng)站等業(yè)務(wù)。立足成都服務(wù)米易,十余年網(wǎng)站建設(shè)經(jīng)驗(yàn),價(jià)格優(yōu)惠、服務(wù)專業(yè),歡迎來電咨詢建站服務(wù):18982081108
Flink是一個(gè)框架和分布式處理引擎,用于對(duì)無界和有界數(shù)據(jù)流進(jìn)行有狀態(tài)計(jì)算。Flink被設(shè)計(jì)在所有常見的集群環(huán)境中運(yùn)行,以內(nèi)存執(zhí)行速度和任意規(guī)模來執(zhí)行計(jì)算。主要特性包括:批流一體化、精密的狀態(tài)管理、事件時(shí)間支持以及精確一次的狀態(tài)一致性保障等。Flink不僅可以運(yùn)行在包括YARN、Mesos、Kubernetes在內(nèi)的多種資源管理框架上,還支持在裸機(jī)集群上獨(dú)立部署。在啟用高可用選項(xiàng)的情況下,它不存在單點(diǎn)失效問題。
這里要說明兩個(gè)概念:
邊界:無邊界和有邊界數(shù)據(jù)流,可以理解為數(shù)據(jù)的聚合策略或者條件;
狀態(tài):即執(zhí)行順序上是否存在依賴關(guān)系,即下次執(zhí)行是否依賴上次結(jié)果;
Data Driven
事件驅(qū)動(dòng)型應(yīng)用無須查詢遠(yuǎn)程數(shù)據(jù)庫,本地?cái)?shù)據(jù)訪問使得它具有更高的吞吐和更低的延遲,以反欺詐案例來看,DataDriven把處理的規(guī)則模型寫到DatastreamAPI中,然后將整個(gè)邏輯抽象到Flink引擎,當(dāng)事件或者數(shù)據(jù)流入就會(huì)觸發(fā)相應(yīng)的規(guī)則模型,一旦觸發(fā)規(guī)則中的條件后,DataDriven會(huì)快速處理并對(duì)業(yè)務(wù)應(yīng)用進(jìn)行通知。
Data Analytics
和批量分析相比,由于流式分析省掉了周期性的數(shù)據(jù)導(dǎo)入和查詢過程,因此從事件中獲取指標(biāo)的延遲更低。不僅如此,批量查詢必須處理那些由定期導(dǎo)入和輸入有界性導(dǎo)致的人工數(shù)據(jù)邊界,而流式查詢則無須考慮該問題,F(xiàn)link為持續(xù)流式分析和批量分析都提供了良好的支持,實(shí)時(shí)處理分析數(shù)據(jù),應(yīng)用較多的場(chǎng)景如實(shí)時(shí)大屏、實(shí)時(shí)報(bào)表。
Data Pipeline
與周期性的ETL作業(yè)任務(wù)相比,持續(xù)數(shù)據(jù)管道可以明顯降低將數(shù)據(jù)移動(dòng)到目的端的延遲,例如基于上游的StreamETL進(jìn)行實(shí)時(shí)清洗或擴(kuò)展數(shù)據(jù),可以在下游構(gòu)建實(shí)時(shí)數(shù)倉,確保數(shù)據(jù)查詢的時(shí)效性,形成高時(shí)效的數(shù)據(jù)查詢鏈路,這種場(chǎng)景在媒體流的推薦或者搜索引擎中十分常見。
[root@hop01 opt]# tar -zxvf flink-1.7.0-bin-hadoop27-scala_2.11.tgz [root@hop02 opt]# mv flink-1.7.0 flink1.7
管理節(jié)點(diǎn)
[root@hop01 opt]# cd /opt/flink1.7/conf [root@hop01 conf]# vim flink-conf.yaml jobmanager.rpc.address: hop01
分布節(jié)點(diǎn)
[root@hop01 conf]# vim slaves hop02 hop03
兩個(gè)配置同步到所有集群節(jié)點(diǎn)下面。
/opt/flink1.7/bin/start-cluster.sh /opt/flink1.7/bin/stop-cluster.sh
啟動(dòng)日志:
[root@hop01 conf]# /opt/flink1.7/bin/start-cluster.sh Starting cluster. Starting standalonesession daemon on host hop01. Starting taskexecutor daemon on host hop02. Starting taskexecutor daemon on host hop03.
訪問:http://hop01:8081/
分發(fā)一個(gè)數(shù)據(jù)腳本到各個(gè)節(jié)點(diǎn):
/var/flink/test/word.txt
這里基于Java寫的基礎(chǔ)案例。
org.apache.flink flink-java 1.7.0 org.apache.flink flink-streaming-java_2.11 1.7.0
這里直接讀取文件中的數(shù)據(jù),經(jīng)過程序流程分析出每個(gè)單詞出現(xiàn)的次數(shù)。
public class WordCount { public static void main(String[] args) throws Exception { // 讀取文件數(shù)據(jù) readFile () ; } public static void readFile () throws Exception { // 1、執(zhí)行環(huán)境創(chuàng)建 ExecutionEnvironment environment = ExecutionEnvironment.getExecutionEnvironment(); // 2、讀取數(shù)據(jù)文件 String filePath = "/var/flink/test/word.txt" ; DataSetinputFile = environment.readTextFile(filePath); // 3、分組并求和 DataSet > wordDataSet = inputFile.flatMap(new WordFlatMapFunction( )).groupBy(0).sum(1); // 4、打印處理結(jié)果 wordDataSet.print(); } // 數(shù)據(jù)讀取個(gè)切割方式 static class WordFlatMapFunction implements FlatMapFunction > { @Override public void flatMap(String input, Collector > collector){ String[] wordArr = input.split(","); for (String word : wordArr) { collector.collect(new Tuple2<>(word, 1)); } } } }
在hop01服務(wù)上創(chuàng)建一個(gè)端口,并模擬一些數(shù)據(jù)發(fā)送到該端口:
[root@hop01 ~]# nc -lk 5566 c++,java
通過Flink程序讀取并分析該端口的數(shù)據(jù)內(nèi)容:
public class WordCount { public static void main(String[] args) throws Exception { // 讀取端口數(shù)據(jù) readPort (); } public static void readPort () throws Exception { // 1、執(zhí)行環(huán)境創(chuàng)建 StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment(); // 2、讀取Socket數(shù)據(jù)端口 DataStreamSourceinputStream = environment.socketTextStream("hop01", 5566); // 3、數(shù)據(jù)讀取個(gè)切割方式 SingleOutputStreamOperator > resultDataStream = inputStream.flatMap( new FlatMapFunction >() { @Override public void flatMap(String input, Collector > collector) { String[] wordArr = input.split(","); for (String word : wordArr) { collector.collect(new Tuple2<>(word, 1)); } } }).keyBy(0).sum(1); // 4、打印分析結(jié)果 resultDataStream.print(); // 5、環(huán)境啟動(dòng) environment.execute(); } }
FlinkClient
客戶端用來準(zhǔn)備和發(fā)送數(shù)據(jù)流到JobManager節(jié)點(diǎn),之后根據(jù)具體需求,客戶端可以直接斷開連接,或者維持連接狀態(tài)等待任務(wù)處理結(jié)果。
JobManager
在Flink集群中,會(huì)啟動(dòng)一個(gè)JobManger節(jié)點(diǎn)和至少一個(gè)TaskManager節(jié)點(diǎn),JobManager收到客戶端提交的任務(wù)后,JobManager會(huì)把任務(wù)協(xié)調(diào)下發(fā)到具體的TaskManager節(jié)點(diǎn)去執(zhí)行,TaskManager節(jié)點(diǎn)將心跳和處理信息發(fā)送給JobManager。
TaskManager
任務(wù)槽(slot)是TaskManager中最小的資源調(diào)度單位,在啟動(dòng)的時(shí)候就設(shè)置好了槽位數(shù),每個(gè)槽位能啟動(dòng)一個(gè)Task,接收J(rèn)obManager節(jié)點(diǎn)部署的任務(wù),并進(jìn)行具體的分析處理。
GitHub·地址 https://github.com/cicadasmile/big-data-parent GitEE·地址 https://gitee.com/cicadasmile/big-data-parent
感謝各位的閱讀,以上就是“java中Flink集群搭建與運(yùn)行機(jī)制”的內(nèi)容了,經(jīng)過本文的學(xué)習(xí)后,相信大家對(duì)java中Flink集群搭建與運(yùn)行機(jī)制這一問題有了更深刻的體會(huì),具體使用情況還需要大家實(shí)踐驗(yàn)證。這里是創(chuàng)新互聯(lián),小編將為大家推送更多相關(guān)知識(shí)點(diǎn)的文章,歡迎關(guān)注!