十年網(wǎng)站開發(fā)經(jīng)驗(yàn) + 多家企業(yè)客戶 + 靠譜的建站團(tuán)隊(duì)
量身定制 + 運(yùn)營(yíng)維護(hù)+專業(yè)推廣+無(wú)憂售后,網(wǎng)站問(wèn)題一站解決
遞歸的思想主要是能夠重復(fù)某些動(dòng)作,比如簡(jiǎn)單的階乘,次方,回溯中的八皇后,數(shù)獨(dú),還有漢諾塔,分形。
讓客戶滿意是我們工作的目標(biāo),不斷超越客戶的期望值來(lái)自于我們對(duì)這個(gè)行業(yè)的熱愛。我們立志把好的技術(shù)通過(guò)有效、簡(jiǎn)單的方式提供給客戶,將通過(guò)不懈努力成為客戶在信息化領(lǐng)域值得信任、有價(jià)值的長(zhǎng)期合作伙伴,公司提供的服務(wù)項(xiàng)目有:主機(jī)域名、虛擬主機(jī)、營(yíng)銷軟件、網(wǎng)站建設(shè)、德州網(wǎng)站維護(hù)、網(wǎng)站推廣。
由于堆棧的機(jī)制,一般的遞歸可以保留某些變量在歷史狀態(tài)中,比如你提到的return
x
*
power...,
但是某些或許龐大的問(wèn)題或者是深度過(guò)大的問(wèn)題就需要盡量避免遞歸,因?yàn)榭赡軙?huì)棧溢出。還有一個(gè)問(wèn)題是~python不支持尾遞歸優(yōu)化?。。。∷浴€是盡量避免遞歸的出現(xiàn)。
def
power(x,
n)
if
n
0:
return
1
return
x
*
power(x,
n
-
1)
power(3,
3)
3
*
power(3,
2)
3
*
(3
*
power(3,
1))
3
*
(3
*
(3
*
power(3,
0)))
3
*
(3
*
(3
*
1))
這里n
=
0,
return
1
3
*
(3
*
3)
3
*
9
27
當(dāng)函數(shù)形參n=0的時(shí)候,開始回退~直到第一次調(diào)用power結(jié)束。
def Sum(m): #函數(shù)返回兩個(gè)值:遞歸次數(shù),所求的值 if m==1:return 1,m return 1+Sum(m-1)[0],m+Sum(m-1)[1]cishu=Sum(10)[0] print cishu def Sum(m,n=1): ... if m==1:return n,m ... return n,m+Sum(m-1,n+1)[1] print Sum(10)[0] 10 print Sum(5)[0] 5
遞歸式方法可以被用于解決很多的計(jì)算機(jī)科學(xué)問(wèn)題,因此它是計(jì)算機(jī)科學(xué)中十分重要的一個(gè)概念。
絕大多數(shù)編程語(yǔ)言支持函數(shù)的自調(diào)用,在這些語(yǔ)言中函數(shù)可以通過(guò)調(diào)用自身來(lái)進(jìn)行遞歸。計(jì)算理論可以證明遞歸的作用可以完全取代循環(huán),因此在很多函數(shù)編程語(yǔ)言(如Scheme)中習(xí)慣用遞歸來(lái)實(shí)現(xiàn)循環(huán)。
計(jì)算機(jī)科學(xué)家尼克勞斯·維爾特如此描述遞歸:
遞歸的強(qiáng)大之處在于它允許用戶用有限的語(yǔ)句描述無(wú)限的對(duì)象。因此,在計(jì)算機(jī)科學(xué)中,遞歸可以被用來(lái)描述無(wú)限步的運(yùn)算,盡管描述運(yùn)算的程序是有限的。
python 2 遞歸函數(shù)和其它語(yǔ)言,基本沒(méi)有差別,只是不支持尾遞歸。無(wú)限遞歸最大值為固定的,但可以修改。
作者:黃哥
所謂基例就是不需要遞歸就能求解的,一般來(lái)說(shuō)是問(wèn)題的最小規(guī)模下的解。
例如:斐波那契數(shù)列遞歸,f(n)
=
f(n-1)
+
f(n-2),基例是1和2,f(1)和f(2)結(jié)果都是1
再比如:漢諾塔遞歸,基例就是1個(gè)盤子的情況,只需移動(dòng)一次,無(wú)需遞歸
遞歸必須有基例,否則就是無(wú)法退出的遞歸,不能求解。