十年網站開發(fā)經驗 + 多家企業(yè)客戶 + 靠譜的建站團隊
量身定制 + 運營維護+專業(yè)推廣+無憂售后,網站問題一站解決
目錄
專注于為中小企業(yè)提供網站制作、成都網站建設服務,電腦端+手機端+微信端的三站合一,更高效的管理,為中小企業(yè)盧氏免費做網站提供優(yōu)質的服務。我們立足成都,凝聚了一批互聯網行業(yè)人才,有力地推動了1000+企業(yè)的穩(wěn)健成長,幫助中小企業(yè)通過網站建設實現規(guī)模擴充和轉變。
許多編程語言都有一個特殊的函數,當操作系統(tǒng)開始運行程序時會自動執(zhí)行該函數。這個函數通常被命名為main(),并且依據語言標準具有特定的返回類型和參數。另一方面,Python解釋器從文件頂部開始執(zhí)行腳本,并且沒有自動執(zhí)行的特殊函數。
盡管如此,為程序的執(zhí)行定義一個起始點有助于理解程序是如何運行的。Python程序員提出了幾種方式對此進行實現。
本文結束時,您將了解以下內容:
Python中的基本main()函數
一些Python腳本中,包含一個函數定義和一個條件語句,如下所示:
此代碼中,包含一個main()函數,在程序執(zhí)行時打印Hello World!。此外,還包含一個條件(或if)語句,用于檢查__name__的值并將其與字符串"__main__"進行比較。當if語句為True時,Python解釋器將執(zhí)行main()函數。更多關于Python條件語句的信息可以由此獲得。
這種代碼模式在Python文件中非常常見,它將作為腳本執(zhí)行并導入另一個模塊。為了幫助理解這段代碼的執(zhí)行方式,首先需要了解Python解釋器如何根據代碼的執(zhí)行方式設置__name__。
Python中的執(zhí)行模式
Python解釋器執(zhí)行代碼有兩種方式:
更多內容可參考如何運行Python腳本。無論采用哪種方式,Python都會定義一個名為__name__的特殊變量,該變量包含一個字符串,其值取決于代碼的使用方式。
本文將如下示例文件保存為execution_methods.py,以 探索 代碼如何根據上下文改變行為:
在此文件中,定義了三個對print()函數的調用。前兩個打印一些介紹性短語。第三個print()會先打印短語The value __name__ is,之后將使用Python內置的repr()函數打印出__name__變量。
在Python中,repr()函數將對象轉化為供解釋器讀取的形式。上述示例通過使用repr()函數來強調__name__的值為字符串。更多關于repr()的內容可參考Python文檔。
在本文中,您將隨處可見文件(file),模塊(module)和腳本(script)這三個字眼。實際上,三者之間并無太大的差別。不過,在強調代碼目的時,還是存在細微的差異:
“如何運行Python腳本”一文也討論了三者的差別。
基于命令行執(zhí)行
在這類方法中,Python腳本將通過命令行來執(zhí)行。
執(zhí)行腳本時,無法與Python解釋器正在執(zhí)行的代碼交互。關于如何通過命令行執(zhí)行代碼的詳細信息對本文而言并不重要,但您可以通過展開下框閱讀更多有關Windows,Linux和macOS之間命令行差異的內容。
命令行環(huán)境
不同的操作系統(tǒng)在使用命令行執(zhí)行代碼時存在細微的差異。
在Linux和macOS中,通常使用如下命令:
美元符號($)之前的內容可能有所不同,具體取決于您的用戶名和計算機名稱。您鍵入的命令位于$之后。在Linux或macOS上,Python3的可執(zhí)行文件名為python3,因此可以通過輸入python3 script_name.py來運行python腳本。
在Windows上,命令提示符通常如下所示:
根據您的用戶名,之前的內容可能會有所不同,您輸入的命令位于之后。在Windows上,Python3的可執(zhí)行文件通常為python。因此可以通過輸入python script_name.py來運行python腳本。
無論哪種操作系統(tǒng),本文的Python腳本的輸出結果都是相同的。因此本文以Linux和macOS為例。
使用命令行執(zhí)行execution_methods.py,如下所示:
在這個示例中,__name__具有值'__main__',其中引號(')表明該值為字符串類型。
請記住,在Python中,使用單引號(')和雙引號(")定義的字符串沒有區(qū)別。更多關于字符串的內容請參考Python的基本數據類型。
如果在腳本中包含"shebang行"并直接執(zhí)行它(./execution_methods.py),或者使用IPython或Jupyter Notebook的%run,將會獲取相同的結果。
您還可以通過向命令行添加-m參數的方法實現以模塊的方式執(zhí)行。通常情況下,推薦如下方式pip: python3 -m pip install package_name。
添加-m參數將會運行包中__main__.py的代碼。更多關于__main__.py文件的內容可參考如何將開源Python包發(fā)布到PyPI中。
在三種情況中,__name__都具有相同的值:字符串'__main__'。
技術細節(jié):Python文檔中具體定義了__name__何時取值為'__main__'。
當通過標準輸入,腳本或者交互提示中讀取數據時,模塊的__name__將取值為'__main__'。(來源)
__name__與__doc__,__package__和其他屬性一起存儲在模塊的全局命名空間。更多關于屬性的信息可參考Python數據模型文檔,特別是關于模塊和包的信息,請參閱Python Import文檔。
導入模塊或解釋器
接下來是Python解釋器執(zhí)行代碼的第二種方式:導入。在開發(fā)模塊或腳本時,可以使用import關鍵字導入他人已經構建的模塊。
在導入過程中,Python執(zhí)行指定模塊中定義的語句(但僅在第一次導入模塊時)。要演示導入execution_methods.py文件的結果,需要啟動Python解釋器,然后導入execution_methods.py文件:
在此代碼輸出中,Python解釋器執(zhí)行了三次print()函數調用。前兩行由于沒有變量,在輸出方面與在命令行上作為腳本執(zhí)行時完全相同。但是第三個輸出存在差異。
當Python解釋器導入代碼時,__name__的值與要導入的模塊的名稱相同。您可以通過第三行的輸出了解這一點。__name__的值為'execution_methods',是Python導入的.py文件。
注意如果您在沒有退出Python時再次導入模塊,將不會有輸出。
注意:更多關于導入在Python中如何工作的內容請參考官方文檔和Python中的絕對和相對導入。
Main函數的最佳實踐
既然您已經了解兩種執(zhí)行方式上的差異,那么掌握一些最佳實踐方案還是很有用的。它們將適用于編寫作為腳本運行的代碼或者在另一個模塊導入的代碼。
如下是四種實踐方式:
將大部分代碼放入函數或類中
請記住,Python解釋器在導入模塊時會執(zhí)行模塊中的所有代碼。有時如果想要實現用戶可控的代碼,會導致一些副作用,例如:
在這種情況下,想要實現用戶控制觸發(fā)此代碼的執(zhí)行,而不是讓Python解釋器在導入模塊時執(zhí)行代碼。
因此,最佳方法是將大部分代碼包含在函數或類中。這是因為當Python解釋器遇到def或class關鍵字時,它只存儲這些定義供以后使用,并且在用戶通知之前不會實際執(zhí)行。
將如下代碼保存在best_practices.py以證明這個想法:
在此代碼中,首先從time模塊中導入sleep()。
在這個示例中,參數以秒的形式傳入sleep()函數中,解釋器將暫停一段時間再運行。隨后,使用print()函數打印關于代碼描述的語句。
之后,定義一個process_data()函數,執(zhí)行如下五項操作:
在命令行中執(zhí)行
當你將此文件作為腳本用命令行執(zhí)行時會發(fā)生什么呢?
Python解釋器將執(zhí)行函數定義之外的from time import sleep和print(),之后將創(chuàng)建函數process_data()。然后,腳本將退出而不做任何進一步的操作,因為腳本沒有任何執(zhí)行process_data()的代碼。
如下是這段腳本的執(zhí)行結果:
我們在這里看到的輸出是第一個print()的結果。注意,從time導入和定義process_data()函數不產生結果。具體來說,調用定義在process_data()內部的print()不會打印結果。
導入模塊或解釋器執(zhí)行
在會話(或其他模塊)中導入此文件時,Python解釋器將執(zhí)行相同的步驟。
Python解釋器導入文件后,您可以使用已導入模塊中定義的任何變量,類或函數。為了證明這一點,我們將使用可交互的Python解釋器。啟動解釋器,然后鍵入import best_practices:
導入best_practices.py后唯一的輸出來自process_data()函數外定義的print()。導入模塊或解釋器執(zhí)行與基于命令行執(zhí)行類似。
使用__name__控制代碼的執(zhí)行
如何實現基于命令行而不使用Python解釋器導入文件來執(zhí)行呢?
您可以使用__name__來決定執(zhí)行上下文,并且當__name__等于"__main__"時才執(zhí)行process_data()。在best_practices.py文件中添加如下代碼:
這段代碼添加了一個條件語句來檢驗__name__的值。當值為"__main__"時,條件為True。記住當__name__變量的特殊值為"__main__"時意味著Python解釋器會執(zhí)行腳本而不是將其導入。
條件語塊內添加了四行代碼(第12,13,14和15行):
現在,在命令行中運行best_practices.py,并觀察輸出的變化:
首先,輸出顯示了process_data()函數外的print()的調用結果。
之后,data的值被打印。因為當Python解釋器將文件作為腳本執(zhí)行時,變量__name__具有值"__main__",因此條件語句被計算為True。
接下來,腳本將調用process_data()并傳入data進行修改。當process_data執(zhí)行時,將輸出一些狀態(tài)信息。最終,將輸出modified_data的值。
現在您可以驗證從解釋器(或其他模塊)導入best_practices.py后發(fā)生的事情了。如下示例演示了這種情況:
注意,當前結果與將條件語句添加到文件末尾之前相同。因為此時__name__變量的值為"best_practices",因此條件語句結果為False,Python將不執(zhí)行process_data()。
創(chuàng)建名為main()的函數來包含要運行的代碼
現在,您可以編寫作為腳本由從命令行執(zhí)行并導入且沒有副作用的Python代碼。接下來,您將學習如何編寫代碼并使其他程序員能輕松地理解其含義。
許多語言,如C,C++,Java以及其他的一些語言,都會定義一個叫做main()的函數,當編譯程序時,操作系統(tǒng)會自動調用該函數。此函數通常被稱為入口點(entry point),因為它是程序進入執(zhí)行的起始位置。
相比之下,Python沒有一個特殊的函數作為腳本的入口點。實際上在Python中可以將入口點定義成任何名稱。
盡管Python不要求將函數命名為main(),但是最佳的做法是將入口點函數命名為main()。這樣方便其他程序員定位程序的起點。
此外,main()函數應該包含Python解釋器執(zhí)行文件時要運行的任何代碼。這比將代碼放入條件語塊中更好,因為用戶可以在導入模塊時重復使用main()函數。
修改best_practices.py文件如下所示:
在這個示例中,定義了一個main()函數,它包含了上面的條件語句塊。之后修改條件語塊執(zhí)行main()。如果您將此代碼作為腳本運行或導入,將獲得與上一節(jié)相同的輸出。
在main()中調用其他函數
另一種常見的實現方式是在main()中調用其他函數,而不是直接將代碼寫入main()。這樣做的好處在于可以實現將幾個獨立運行的子任務整合。
例如,某個腳本有如下功能:
如果在單獨的函數中各自實現這些子任務,您(或其他用戶)可以很容易地實現代碼重用。之后您可以在main()函數中創(chuàng)建默認的工作流。
您可以根據自己的情況選擇是否使用此方案。將任務拆分為多個函數會使重用更容易,但會增加他人理解代碼的難度。
修改best_practices.py文件如下所示:
在此示例代碼中,文件的前10行具有與之前相同的內容。第12行的第二個函數創(chuàng)建并返回一些示例數據,第17行的第三個函數模擬將修改后的數據寫入數據庫。
第21行定義了main()函數。在此示例中,對main()做出修改,它將調用數據讀取,數據處理以及數據寫入等功能。
首先,從read_data_from_web()中創(chuàng)建data。將data作為參數傳入process_data(),之后將返回modified_data。最后,將modified_data傳入write_data_to_database()。
腳本的最后兩行是條件語塊用于驗證__name__,并且如果if語句為True,則執(zhí)行main()。
在命令行中運行如下所示:
根據執(zhí)行結果,Python解釋器在執(zhí)行main()函數時,將依次執(zhí)行read_data_from_web(),process_data()以及write_data_to_database()。當然,您也可以導入best_practices.py文件并重用process_data()作為不同的數據輸入源,如下所示:
在此示例中,導入了best_practices并且將其簡寫為bp。
導入過程會導致Python解釋器執(zhí)行best_practices.py的全部代碼,因此輸出顯示解釋文件用途的信息。
然后,從文件中存儲數據而不是從Web中讀取數據。之后,可以重用best_practices.py文件中的process_data()和write_data_to_database()函數。在此情況下,可以利用代碼重寫來取代在main()函數中實現全部的代碼邏輯。
實踐總結
以下是Python中main()函數的四個關鍵最佳實踐:
結論
恭喜!您現在已經了解如何創(chuàng)建Python main()函數了。
本文介紹了如下內容:
現在,您可以開始編寫一些非常棒的關于Python main()函數代碼啦!
import
csv
def
values
():
reader
=
csv.reader(open("H:/python_study_data/1.txt",
"rb"),
delimiter
=
"\t")
for
row
in
reader:
chr,
start,
end
=
row[0],
int(row[1]),
int(row[2])
yield
(start,
end)
#return
改為yield生成器
def
main
():
for
start,
end
in
values():
aa
=
end-start
aa
if
__name__
==
'__main__':
main()
一般來說,Python程序員可能是這樣寫main()函數的:
"""Module docstring.
This serves as a long usage message.
"""import sysimport getoptdef main():
# parse command line options
try:
opts, args = getopt.getopt(sys.argv[1:], "h", ["help"]) except getopt.error, msg: print msg print "for help use --help"
sys.exit(2) # process options
for o, a in opts: if o in ("-h", "--help"): print __doc__
sys.exit(0) # process arguments
for arg in args:
process(arg) # process() is defined elsewhereif __name__ == "__main__":
main()1234567891011121314151617181920212223242526
Guido也承認之前自己寫的main()函數也是類似的結構,但是這樣寫的靈活性還不夠高,尤其是需要解析復雜的命令行選項時。為此,他向大家提出了幾點建議。
添加可選的 argv 參數
首先,修改main()函數,使其接受一個可選參數 argv,支持在交互式shell中調用該函數:
def main(argv=None):
if argv is None:
argv = sys.argv # etc., replacing sys.argv with argv in the getopt() call.1234
這樣做,我們就可以動態(tài)地提供 argv 的值,這比下面這樣寫更加的靈活:
def main(argv=sys.argv):
# etc.12
這是因為在調用函數時,sys.argv 的值可能會發(fā)生變化;可選參數的默認值都是在定義main()函數時,就已經計算好的。
但是現在sys.exit()函數調用會產生問題:當main()函數調用sys.exit()時,交互式解釋器就會推出!解決辦法是讓main()函數的返回值指示退出狀態(tài)(exit status)。因此,最后面的那行代碼就變成了這樣:
if __name__ == "__main__":
sys.exit(main())12
并且,main()函數中的sys.exit(n)調用全部變成return n。
定義一個Usage()異常
另一個改進之處,就是定義一個Usage()異常,可以在main()函數最后的except子句捕捉該異常:
import sysimport getoptclass Usage(Exception):
def __init__(self, msg):
self.msg = msgdef main(argv=None):
if argv is None:
argv = sys.argv try: try:
opts, args = getopt.getopt(argv[1:], "h", ["help"]) except getopt.error, msg: raise Usage(msg) # more code, unchanged
except Usage, err: print sys.stderr, err.msg print sys.stderr, "for help use --help"
return 2if __name__ == "__main__":
sys.exit(main())123456789101112131415161718192021222324
這樣main()函數就只有一個退出點(exit)了,這比之前兩個退出點的做法要好。而且,參數解析重構起來也更容易:在輔助函數中引發(fā)Usage的問題不大,但是使用return 2卻要求仔細處理返回值傳遞的問題。
python 的函數參數類型分為4種:
1.位置參數:調用函數時根據函數定義的參數位置來傳遞參數,位置參數也可以叫做必要參數,函數調用時必須要傳的參數。
當參數滿足函數必要參數傳參的條件,函數能夠正常執(zhí)行:
add(1,2) #兩個參數的順序必須一一對應,且少一個參數都不可以
當我們運行上面的程序,輸出:
當函數需要兩個必要參數,但是調用函數只給了一個參數時,程序會拋出異常
add(1)
當我們運行上面的程序,輸出:
當函數需要兩個必要參數,但是調用函數只給了三個參數時,程序會拋出異常
add(1,2,3)
當我們運行上面的程序,輸出
2.關鍵字參數:用于函數調用,通過“鍵-值”形式加以指定??梢宰尯瘮蹈忧逦⑷菀资褂?,同時也清除了參數的順序需求。
add(1,2) # 這種方式傳參,必須按順序傳參:x對應1,y對應:2
add(y=2,x=1) #以關健字方式傳入參數(可以不按順序)
正確的調用方式
add(x=1, y=2)
add(y=2, x=1)
add(1, y=2)
以上調用方式都是允許的,能夠正常執(zhí)行
錯誤的調用方式
add(x=1, 2)
add(y=2, 1)
以上調用都會拋出SyntaxError 異常
上面例子可以看出:有位置參數時,位置參數必須在關鍵字參數的前面,但關鍵字參數之間不存在先后順序的
3.默認參數:用于定義函數,為參數提供默認值,調用函數時可傳可不傳該默認參數的值,所有位置參數必須出現在默認參數前,包括函數定義和調用,有多個默認參數時,調用的時候,既可以按順序提供默認參數,也可以不按順序提供部分默認參數。當不按順序提供部分默認參數時,需要把參數名寫上
默認參數的函數定義
上面示例第一個是正確的定義位置參數的方式,第二個是錯誤的,因為位置參數在前,默認參數在后
def add1(x=1,y) 的定義會拋出如下異常
默認參數的函數調用
注意:定義默認參數默認參數最好不要定義為可變對象,容易掉坑
不可變對象:該對象所指向的內存中的值不能被改變,int,string,float,tuple
可變對象,該對象所指向的內存中的值可以被改變,dict,list
這里只要理解一下這個概念就行或者自行百度,后續(xù)會寫相關的專題文章講解
舉一個簡單示例
4.可變參數區(qū)別:定義函數時,有時候我們不確定調用的時候會多少個參數,j就可以使用可變參數
可變參數主要有兩類:
*args: (positional argument) 允許任意數量的可選位置參數(參數),將被分配給一個元組, 參數名前帶*,args只是約定俗成的變量名,可以替換其他名稱
**kwargs:(keyword argument) 允許任意數量的可選關鍵字參數,,將被分配給一個字典,參數名前帶**,kwargs只是約定俗成的變量名,可以替換其他名稱
*args 的用法
args 是用來傳遞一個非鍵值對的可變數量的參數列表給函數
語法是使用 符號的數量可變的參數; 按照慣例,通常是使用arg這個單詞,args相當于一個變量名,可以自己定義的
在上面的程序中,我們使用* args作為一個可變長度參數列表傳遞給add()函數。 在函數中,我們有一個循環(huán)實現傳遞的參數計算和輸出結果。
還可以直接傳遞列表或者數組的方式傳遞參數,以數組或者列表方式傳遞參數名前面加(*) 號
理解* * kwargs
**kwargs 允許你將不定長度的鍵值對, 作為參數傳遞給函數,這些關鍵字參數在函數內部自動組裝為一個dict
下篇詳細講解 *args, **kwargs 的參數傳遞和使用敬請關注
在其它python文件中調用這個文件時,就不滿足__name__ == '__main__'這個條件了,所以你找錯地方了。
不通過python文件調用它,就滿足這個條件。
-----------------------------
一般情況下,我們都是在這個判斷后做測試:
直接運行dbpoll.py將執(zhí)行文檔中的測試
而使用這個文件里的功能,則是常規(guī)的引入:import后實例化相應的類: