十年網(wǎng)站開(kāi)發(fā)經(jīng)驗(yàn) + 多家企業(yè)客戶 + 靠譜的建站團(tuán)隊(duì)
量身定制 + 運(yùn)營(yíng)維護(hù)+專業(yè)推廣+無(wú)憂售后,網(wǎng)站問(wèn)題一站解決
利用tensorflow怎么實(shí)現(xiàn)打印內(nèi)存中的變量?很多新手對(duì)此不是很清楚,為了幫助大家解決這個(gè)難題,下面小編將為大家詳細(xì)講解,有這方面需求的人可以來(lái)學(xué)習(xí)下,希望你能有所收獲。

方法一:
循環(huán)打印
模板
for (x, y) in zip(tf.global_variables(), sess.run(tf.global_variables())): print '\n', x, y
實(shí)例
# coding=utf-8
import tensorflow as tf
def func(in_put, layer_name, is_training=True):
with tf.variable_scope(layer_name, reuse=tf.AUTO_REUSE):
bn = tf.contrib.layers.batch_norm(inputs=in_put,
decay=0.9,
is_training=is_training,
updates_collections=None)
return bn
def main():
with tf.Graph().as_default():
# input_x
input_x = tf.placeholder(dtype=tf.float32, shape=[1, 4, 4, 1])
import numpy as np
i_p = np.random.uniform(low=0, high=255, size=[1, 4, 4, 1])
# outputs
output = func(input_x, 'my', is_training=True)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
t = sess.run(output, feed_dict={input_x:i_p})
# 法一: 循環(huán)打印
for (x, y) in zip(tf.global_variables(), sess.run(tf.global_variables())):
print '\n', x, y
if __name__ == "__main__":
main()2017-09-29 10:10:22.714213: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1052] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0, compute capability: 6.1)[ 0.] [ 13.46412563] [ 452.62246704] Process finished with exit code 0
方法二:
指定變量名打印
模板
print 'my/BatchNorm/beta:0', (sess.run('my/BatchNorm/beta:0'))實(shí)例
# coding=utf-8
import tensorflow as tf
def func(in_put, layer_name, is_training=True):
with tf.variable_scope(layer_name, reuse=tf.AUTO_REUSE):
bn = tf.contrib.layers.batch_norm(inputs=in_put,
decay=0.9,
is_training=is_training,
updates_collections=None)
return bn
def main():
with tf.Graph().as_default():
# input_x
input_x = tf.placeholder(dtype=tf.float32, shape=[1, 4, 4, 1])
import numpy as np
i_p = np.random.uniform(low=0, high=255, size=[1, 4, 4, 1])
# outputs
output = func(input_x, 'my', is_training=True)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
t = sess.run(output, feed_dict={input_x:i_p})
# 法二: 指定變量名打印
print 'my/BatchNorm/beta:0', (sess.run('my/BatchNorm/beta:0'))
print 'my/BatchNorm/moving_mean:0', (sess.run('my/BatchNorm/moving_mean:0'))
print 'my/BatchNorm/moving_variance:0', (sess.run('my/BatchNorm/moving_variance:0'))
if __name__ == "__main__":
main()2017-09-29 10:12:41.374055: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1052] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0, compute capability: 6.1) my/BatchNorm/beta:0 [ 0.] my/BatchNorm/moving_mean:0 [ 8.08649635] my/BatchNorm/moving_variance:0 [ 368.03442383] Process finished with exit code 0
看完上述內(nèi)容是否對(duì)您有幫助呢?如果還想對(duì)相關(guān)知識(shí)有進(jìn)一步的了解或閱讀更多相關(guān)文章,請(qǐng)關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道,感謝您對(duì)創(chuàng)新互聯(lián)的支持。